Tutorübung zu GRNVS
 Übung 10

Jonas Andre

Hexdump KLAUSUR!!!

```
0x0000: 08 60 6e 45 dc e6 00 1c 14 01 4e 18 86 dd 60 00
0x0010: 00 00 00 20 06 40 2a 01 04 f8 0d 16 19 43 00 00
0x0020: 00 00 00 00 00 02 2a 02 02 e0 03 fe 10 01 77 77
0x0030: 77 2e 00 02 00 85 ce 44 00 50 9b 94 59 c9 2f e7
0x0040: 5d 10 50 10 65 00 85 88 00 00 47 45 54 20 2f 68
0x0050: 65 78 0d 0a Od 0a
```


Hexdump KLAUSUR!!!

Hexdump KLAUSUR!!!

Hexdump KLAUSUR!!!

b)* Begründen Sie, weswegen überhaupt zwischen Host-Byte-Order und Network-Byte-Order zu unterscheiden ist.

Hexdump KLAUSUR!!!

0x0000:	08	60	6 e	45	dc	e6	00	1c	14	01	4 e	18	86	dd	60	00
0x0010:	00	00	00	20	06	40	2a	01	04	f8	0d	16	19	43	00	00
0x0020:	00	00	00	00	00	02	2a	02	02	e0	03	fe	10	01	77	77
0x0030:	77	2 e	00	02	00	85	ce	44	00	50	9b	94	59	c9	2	f e7
0x0040:	5	10	50	10	65	00	85	88	00	00	47	45	54	20	2	f 68
0x0050:	65	78	0d	0 a	0d	0a										

c)* Geben Sie für das erste und letzte Byte des Ethernet-Headers den Offset in Bytes vom Beginn des Rahmens an.

Hexdump KLAUSUR!!!

$0 \times 0000:$	08	60	6 e	45	dc	e 6	00	1 c	14	01	4 e	18	86	dd	60	00	
$0 \times 0010:$	00	00	00	20	06	40	2 a	01	04	f	0	0	16	19	43	00	00
$0 \times 0020:$	00	00	00	00	00	02	2 a	02	02	e	0	03	fe	10	01	77	77
$0 \times 0030:$	77	2 e	00	02	00	85	ce	44	00	50	9 b	94	59	c 9	2 f	e 7	
$0 \times 0040:$	5 d	10	50	10	65	00	85	88	00	00	47	45	54	20	2 f	68	
$0 \times 0050:$	65	78	0 d	0 a	0 d	0 a											

c)* Geben Sie für das erste und letzte Byte des Ethernet-Headers den Offset in Bytes vom Beginn des Rahmens an.

$$
0 \times 0000-0 \times 000 \mathrm{D}
$$

Hexaunn REAUS!

0x0000:	08	60	6 e	45	dc	e6	00	1c	14	01	4 e	18	86	dd	6000
0x0010:	00	00	00	20	06	40	2a	01	04	f8	0d	16	19	43	0000
0x0020:	00	00	00	00	00	02	2a	02	02	e0	03	fe	10	01	7777
0x0030:	77	2 e	00	02	00	85	ce	44	00	50	9b	94	59	c9	2 f e7
0x0040:	5	10	50	10	65	00	85	88	00	00	47	45	54	20	2 f 68
0x0050:	65	78		0a		0 a									

d) Welches Protokoll wird auf Schicht 3 verwendet?

Hexaunn REAUS!

| $0 \times 0000:$ | 08 | 60 | 6 e | 45 | dc | e 6 | 00 | 1 c | 14 | 01 | 4 e | 18 | 86 | dd | 60 | 00 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0 \times 0010:$ | 00 | 00 | 00 | 20 | 06 | 40 | 2 a | 01 | 04 | f | 0 | 0 d | 16 | 19 | 43 | 00 | 00 |
| $0 \times 0020:$ | 00 | 00 | 00 | 00 | 00 | 02 | 2 a | 02 | 02 | e 0 | 03 | fe | 10 | 01 | 77 | 77 | |
| $0 \times 0030:$ | 77 | 2 e | 00 | 02 | 00 | 85 | ce | 44 | 00 | 50 | 9 b | 94 | 59 | c 9 | 2 f | e 7 | |
| $0 \times 0040:$ | 5 d | 10 | 50 | 10 | 65 | 00 | 85 | 88 | 00 | 00 | 47 | 45 | 54 | 20 | 2 f | 68 | |
| $0 \times 0050:$ | 65 | 78 | 0 d | 0 a | 0 d | 0 a | | | | | | | | | | | |

d) Welches Protokoll wird auf Schicht 3 verwendet?

$$
0 \times 86 d d \rightarrow I P v 6
$$

Hexdump KLAUSUR!!!

e) Geben Sie Funktion und Wert der L3-Header-Felder an, welche auf dem Transportweg von Routern verändert werden müssen.

Hexdump KLAUSUR!!!

e) Geben Sie Funktion und Wert der L3-Header-Felder an, welche auf dem Transportweg von Routern verändert werden müssen.

Hop-Limit, Funktion: Verhinderung von Endlosschleifen

Hexdump KLAUSUR!!!

| $0 \times 0000:$ | 08 | 60 | 6 e | 45 | dc | e 6 | 00 | 1 c | 14 | 01 | 4 e | 18 | 86 | dd | 60 | 00 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0 \times 0010:$ | 00 | 00 | 00 | 20 | 06 | 40 | 2 a | 01 | 04 | f | 0 | 0 | 16 | 19 | 43 | 00 | 00 |
| $0 \times 0020:$ | 00 | 00 | 00 | 00 | 00 | 02 | 2 a | 02 | 02 | e 0 | 03 | fe | 10 | 01 | 77 | 77 | |
| $0 \times 0030:$ | 77 | 2 e | 00 | 02 | 00 | 85 | ce | 44 | 00 | 50 | 9 b | 94 | 59 | c 9 | 2 f | e 7 | |
| $0 \times 0040:$ | 5 d | 10 | 50 | 10 | 65 | 00 | 85 | 88 | 00 | 00 | 47 | 45 | 54 | 20 | 2 f | 68 | |
| $0 \times 0050:$ | 65 | 78 | 0 d | 0 a | 0 d | 0 a | | | | | | | | | | | |

f) Welche Länge hat die L3-SDU?
g) Markieren Sie die Absender- und Empfänger-Adresse im L3-Header. (Zeichnen Sie es direkt in Abbildung 1 ein und machen Sie kenntlich, welche der Adressen zum Absender und welche zum Empfänger gehört.)
h) Woran ist zu erkennen, dass TCP als L4-Protokoll verwendet wird?

Hexdump KLAUSUR!!!

| $0 x 0000:$ | 08 | 60 | 6 e | 45 | dc | e 6 | 00 | 1 c | 14 | 01 | 4 e | 18 | 86 | dd | 60 | 00 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0 \times 0010:$ | 00 | 00 | 00 | 20 | 06 | 40 | 2 a | 01 | 04 | f 8 | 0 d | 16 | 19 | 43 | 00 | 00 | |
| $0 \times 0020:$ | 00 | 00 | 00 | 00 | 00 | 02 | 2 a | 02 | 02 | e 0 | 03 | fe | 10 | 01 | 77 | 77 | |
| $0 \times 0030:$ | 77 | 2 e | 00 | 02 | 00 | 85 | ce | 44 | 00 | 50 | 9 b | 94 | 59 | c 9 | 2 f | e | |
| $0 \times 0040:$ | 5 d | 10 | 50 | 10 | 65 | 00 | 85 | 88 | 00 | 00 | 47 | 45 | 54 | 20 | 2 f | 68 | |
| $0 \times 0050:$ | 65 | 78 | $0 d$ | $0 a$ | $0 d$ | $0 a$ | | | | | | | | | | | |

f) Welche Länge hat die L3-SDU? $0 \times 0020=32 \mathrm{~B}$
g) Markieren Sie die Absender- und Empfänger-Adresse im L3-Header. (Zeichnen Sie es direkt in Abbildung 1 ein und machen Sie kenntlich, welche der Adressen zum Absender und welche zum Empfänger gehört.)
h) Woran ist zu erkennen, dass TCP als L4-Protokoll verwendet wird?

Hexdump KLAUSUR!!!

0x0000:	0860 6e 45 dc e6 00 1c	14014 e 1886 dd 6000
0x0010:	$000000200640 \quad 2 \mathrm{l} 01$	$04 \mathrm{f8} 0 \mathrm{~d} 1619430000$
0x0020:		02 e 0303 fe 10017777
0x0030:		0050 9b 9459 c9 2f e7
0x0040:	5d 10501065008588	$00 \quad 004745 \quad 54 \quad 202 f 68$
0x0050:	6578 Od 0a Od 0a	

f) Welche Länge hat die L 3 -SDU? $0 \times 0020=32 \mathrm{~B}$
g) Markieren Sie die Absender- und Empfänger-Adresse im L3-Header. (Zeichnen Sie es direkt in Abbildung 1 ein und machen Sie kenntlich, welche der Adressen zum Absender und welche zum Empfänger gehört.)
h) Woran ist zu erkennen, dass TCP als L4-Protokoll verwendet wird?

Hexdump KLAUSUR!!!

0x0000:	0860 6e 45 dc e6 00 1c	14014 e 1886 dd 6000
0x0010:	$000000200640 \quad 2 \mathrm{lal}$	$04 \mathrm{f8} 0 \mathrm{~d} 1619430000$
0x0020:		02 e 0303 fe 10017777
0x0030:		0050 9b 9459 c9 2f e7
0x0040:	5d 10 50 10 65 008588	$0000474554202 f 68$
0x0050:	6578 Od 0a Od 0a	

f) Welche Länge hat die L 3 -SDU? $0 \times 0020=32 \mathrm{~B}$
g) Markieren Sie die Absender- und Empfänger-Adresse im L3-Header. (Zeichnen Sie es direkt in Abbildung 1 ein und machen Sie kenntlich, welche der Adressen zum Absender und welche zum Empfänger gehört.)
h) Woran ist zu erkennen, dass TCP als L4-Protokoll verwendet wird?

Hexdump KLAUSUR!!!

i)* Geben Sie den Quellport der Nachricht in Dezimaldarstellung an.
j)* Geben Sie den Zielport der Nachricht in Dezimaldarstellung an.
k) Für welches Protokoll auf der Anwendungsschicht ist die Nachricht offenbar bestimmt?
I)* Geben Sie zwei Gründe an, weswegen Sie auf Basis der Ihnen bekannten Informationen nicht bestimmen können, wie viele Byte bis zum jetzigen Zeitpunkt über diese TCP-Verbindung bereits ausgetauscht wurden.
$\mathrm{m})^{\star}$ Wie groß ist die TCP-Payload für die Anwendungsschicht?
n)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung weiterhin Daten in dieselbe Richtung übertragen werden?
o)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung noch Daten in die Gegenrichtung übertragen werden?

Hexdump KLAUSUR!!!

i)* Geben Sie den Quellport der Nachricht in Dezimaldarstellung an. Oxce44 $=52804$
j)* Geben Sie den Zielport der Nachricht in Dezimaldarstellung an.
k) Für welches Protokoll auf der Anwendungsschicht ist die Nachricht offenbar bestimmt?
I)* Geben Sie zwei Gründe an, weswegen Sie auf Basis der Ihnen bekannten Informationen nicht bestimmen können, wie viele Byte bis zum jetzigen Zeitpunkt über diese TCP-Verbindung bereits ausgetauscht wurden.
$\mathrm{m})^{*}$ Wie groß ist die TCP-Payload für die Anwendungsschicht?
n)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung weiterhin Daten in dieselbe Richtung übertragen werden?
o)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung noch Daten in die Gegenrichtung übertragen werden?

Hexdump KLAUSUR!!!

k) Für welches Protokoll auf der Anwendungsschicht ist die Nachricht offenbar bestimmt?
I)* Geben Sie zwei Gründe an, weswegen Sie auf Basis der Ihnen bekannten Informationen nicht bestimmen können, wie viele Byte bis zum jetzigen Zeitpunkt über diese TCP-Verbindung bereits ausgetauscht wurden.
$\mathrm{m})^{\star}$ Wie groß ist die TCP-Payload für die Anwendungsschicht?
n)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung weiterhin Daten in dieselbe Richtung übertragen werden?
o)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung noch Daten in die Gegenrichtung übertragen werden?

Hexdump KLAUSUR!!!

i)* Geben Sie den Quellport der Nachricht in Dezimaldarstellung an. Oxce44 $=52804$
j)* Geben Sie den Zielport der Nachricht in Dezimaldarstellung an. $0 \times 0050=80$
k) Für welches Protokoll auf der Anwendungsschicht ist die Nachricht offenbar bestimmt? TCP $80 \rightarrow$ HTTP
I)* Geben Sie zwei Gründe an, weswegen Sie auf Basis der Ihnen bekannten Informationen nicht bestimmen können, wie viele Byte bis zum jetzigen Zeitpunkt über diese TCP-Verbindung bereits ausgetauscht wurden.
$m)^{*}$ Wie groß ist die TCP-Payload für die Anwendungsschicht?
n)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung weiterhin Daten in dieselbe Richtung übertragen werden?
o)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung noch Daten in die Gegenrichtung übertragen werden?

Hexdump KLAUSUR!!!

i)* Geben Sie den Quellport der Nachricht in Dezimaldarstellung an. Oxce44 $=52804$
j)* Geben Sie den Zielport der Nachricht in Dezimaldarstellung an. $0 \times 0050=80$
k) Für welches Protokoll auf der Anwendungsschicht ist die Nachricht offenbar bestimmt? TCP $80 \rightarrow$ HTTP
I)* Geben Sie zwei Gründe an, weswegen Sie auf Basis der Ihnen bekannten Informationen nicht bestimmen können, wie viele Byte bis zum jetzigen Zeitpunkt über diese TCP-Verbindung bereits ausgetauscht wurden.
$m)^{*}$ Wie groß ist die TCP-Payload für die Anwendungsschicht? 12B
n)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung weiterhin Daten in dieselbe Richtung übertragen werden?
o)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung noch Daten in die Gegenrichtung übertragen werden?

Hexdump KLAUSUR!!!

i)* Geben Sie den Quellport der Nachricht in Dezimaldarstellung an. Oxce44 $=52804$
j)* Geben Sie den Zielport der Nachricht in Dezimaldarstellung an. $0 \times 0050=80$
k) Für welches Protokoll auf der Anwendungsschicht ist die Nachricht offenbar bestimmt? TCP $80 \rightarrow$ HTTP
I)* Geben Sie zwei Gründe an, weswegen Sie auf Basis der Ihnen bekannten Informationen nicht bestimmen können, wie viele Byte bis zum jetzigen Zeitpunkt über diese TCP-Verbindung bereits ausgetauscht wurden.
$m)^{*}$ Wie groß ist die TCP-Payload für die Anwendungsschicht? 12B
n)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung weiterhin Daten in dieselbe Richtung übertragen werden? Ja, kein FIN-Flag
o)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung noch Daten in die Gegenrichtung übertragen werden?

Hexdump KLAUSUR!!!

i)* Geben Sie den Quellport der Nachricht in Dezimaldarstellung an. Oxce44 $=52804$
j)* Geben Sie den Zielport der Nachricht in Dezimaldarstellung an. $0 \times 0050=80$
k) Für welches Protokoll auf der Anwendungsschicht ist die Nachricht offenbar bestimmt? TCP $80 \rightarrow$ HTTP
I)* Geben Sie zwei Gründe an, weswegen Sie auf Basis der Ihnen bekannten Informationen nicht bestimmen können, wie viele Byte bis zum jetzigen Zeitpunkt über diese TCP-Verbindung bereits ausgetauscht wurden.
$m)^{*}$ Wie groß ist die TCP-Payload für die Anwendungsschicht? 12B
n)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung weiterhin Daten in dieselbe Richtung übertragen werden? Ja, kein FIN-Flag
o)* Können nach diesem Segment innerhalb der laufenden TCP-Verbindung noch Daten in die Gegenrichtung übertragen werden? Unbekannt, evtl. bereits FIN von Gegenseite

Huffmann-Kodierung

Gegeben sei das Alphabet $\mathcal{A}=\{a, b, c, d\}$ und die Nachricht

$$
m=\text { aabccdacababbbbcbddbbbaababdbcbabdbcadba } \in \mathcal{A}^{40} .
$$

a)* Bestimmen Sie die Auftrittswahrscheinlichkeiten $p_{i \in \mathcal{A}}$ der einzelnen Zeichen in m.
b) Bestimmen Sie die den Informationsgehalt $I\left(p_{i \in \mathcal{A}}\right)$ der einzelnen Zeichen.
c) Die Nachricht m stamme aus einer Nachrichtenquelle X. Bestimmen Sie auf Basis der bisherigen Ergebnisse die Quellenentropie $H(X)$.

Huffmann-Kodierung

Gegeben sei das Alphabet $\mathcal{A}=\{a, b, c, d\}$ und die Nachricht

$$
m=\text { aabccdacababbbbcbddbbbaababdbcbabdbcadba } \in \mathcal{A}^{40} .
$$

d) Bestimmen Sie nun einen binären Huffman-Code C für diese Nachrichtenquelle.
e) Bestimmen Sie die durchschnittliche Codewortlänge von C.
f) Vergleichen Sie die durchschnittliche Codewortlänge von C mit der Codewortlänge eines uniformen ${ }^{1}$ Binärcodes.
${ }^{1}$ Ein Code heißt uniform, wenn alle Codewörter dieselbe Länge aufweisen.

